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Today, most vehicle navigation 
systems rely mainly on Global 
Positioning System (GPS) 
receivers as the primary source 

of information to provide the vehicle 
position for an unlimited number of 
users anywhere on the planet. Since 
its advent, the number of applications 
using GPS has increased dramatically 
and include tracking the location and 
speed of people, truck fleets, trains, 
ships, or planes; directing emergency 
vehicles to the scene of an accident; 
mapping where a city’s assets are 
located; and providing precise timing 
for endeavors that require large-scale 
co-ordination. 

GPS, however, can reliably provide 

these types of information only under 
ideal conditions, that is, in open areas 
in which GPS satellite signals can be 
received. In other words, the sys-
tem doesn’t work very well in urban 
canyons, canopy areas, and similar 
environments due to signal block-
age and attenuation deteriorating the 
obtainable positioning accuracy. For 
the moment, any sophisticated urban 
application that demands essentially 
continuous position determination, 
cannot depend on GPS as a stand-
alone system — those who have tried 
are still trying! 

Cost and space constraints are 
currently driving manufacturers of 
vehicles to investigate and develop the 
next generation of low-cost and small-
size navigation and guidance systems 
to meet the fast growing demand for 
in the location-based services and tele-
matics markets. Advances in micro-

electro-mechanical systems (MEMS) 
technology have shed promising light 
on the development of such systems. 
But such sensors high noise and drift 
rate remain a problem, which may be 
alleviated in combination with GPS. 
Solutions that integrate navigation 
data have been recognized as the most 
challenging aspects that remain to turn 
MEMS-based inertial systems into 
robust, accurate navigation systems.

Introducing MEMS
The last two decades have shown an 
increasing demand for low-cost and 
miniature inertial sensors for many 
navigation applications. MEMS-based 
inertial sensors efficiently meet this 
demand. However, due to their light-
weight and fabrication process, MEMS 
sensors still have some performance 
limitations, which consequently affect 
their obtainable accuracy and sensitivity. 

  Kalman Filter Face-Off
	 Extended vs. Unscented Kalman Filters 
	 for Integrated GPS and MEMS Inertial

GPS and micro-electro-mechanical (MEMS) inertial systems have  
complementary qualities that make integrated navigation systems more robust. 
GPS maintains good accuracy but is subject to signal blockages; low-cost MEMS 
are unaffected by satellite signal outages but their accuracy degrades rapidly over 
time. Kalman filter techniques can help bring these two technologies together 
synergistically. But which Kalman filtering design works best? A group of  
Canadian researchers tackles the question.
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One of the main problems of 
MEMS sensors is that the remaining 
uncertainties of the sensor errors (bias, 
scale factor, and noise) are very large 
and sensitive to surrounding environ-
mental changes. Therefore, navigation 
algorithms (i.e., estimators) should be 
able to deal with these uncertainties.

Traditionally the linearized Kal-
man filter (LKF) or the extended Kal-
man filter (EKF) have been used in the 
area of navigation, and recently the 
unscented Kalman filter (UKF) has 
been proposed for low-cost inertial 
navigation. The UKF approach offers 
several benefits. Because we do not  
need to develop a space navigator error 
model for a UKF, the system develop-
ment time can be reduced. Moreover, 
because UKF is a second order filter, 
higher-order errors neglected by the 
EKF can be considered. 

As discussed in the paper by Naser 
El-Sheimy and Eun-Hwan Shin (2004) 
cited in the Additional Resources sec-
tion at the end of this article, a UKF 
can handle large attitude errors. Hence, 
we can use the UKF in navigation sys-
tems based on crude inertial measure-
ment units (IMUs)

In this article, we will compare 
the EKF with the UKF in terms of the 
state model equations and structure 
of the filters. Then we compare the 
performance of both filters by testing 
integrated GPS and MEMS-based IMU 

systems in land vehicle environments. 
The testing process includes 

three MEMS-based IMUs. The first 
two IMUs are currently available in 
the market, while the third one is a 
custom-built IMU developed by the 
Mobile Multi-Sensor Systems Research 
Group at the University of Calgary. 
The custom-built IMU integrates three 
accelerometers and three gyroscopes. 
In this article, we pay special atten-
tion to the filters’ performance during 
the in-motion alignment and to the 
obtained positioning errors during 
GPS outages.

We begin by reviewing implemen-
tation of the EKF and the UKF for the 
integration of low-cost INS (see Table 
1 for a comparison of the performance 
and cost of different INS grades) and 
GPS. Next, we will compare the per-
formance of the two filters using three 
different MEMS-based IMUs and then 
draw conclusions from the test results.

A Profile: the EKF
Traditionally, error state Kalman filters 
— either the LKF or the EKF  — were 
used in the field of navigation. If an 
INS error control loop (feedback) 
exists, then the LKF can be considered 
as the EKF. A low-cost INS cannot 
operate for a long time without the 
feedback loop. Hence, this article will 
only discuss EKF implementation. 

In developing the EKF, the system 

process model and the measurement 
model have to be linearized. In an 
aided inertial navigation system, the 
system process model comprises the 
INS mechanization, a description of 
the evolution of the navigation param-
eters (position, velocity and attitude), 
and the inertial sensor error models. 
Linearization of the system model can 
be done through perturbation analysis, 
a classical approach to INS error analy-
sis. In the perturbation analysis, the 
navigation parameters are perturbed 
with respect to the true navigation 
frame (n-frame). 

Alternatively, we can also analyze 
the INS error with respect to the com-
puter frame (c-frame), the frame that 
the INS computer assumes to be the 
true navigation frame. The choice of an 
appropriate INS error model depends 
upon the given navigation scenario and 
is an important part of the navigation 
software design. 

Regardless of the choice of the INS 
error model, the linearized system 
model can be described in discrete 
time as

(1)
where  is the error state vector 
at time ;  is the state transition 
matrix, and  is the driven response 
at  due to the presence of the input 
white noise during the time interval. 
Because a white sequence is a sequence 
of a zero-mean random variable that is 
uncorrelated time-wise, the covariance 
matrix associated with wk is given as 

(2)
The linearized measurement equation 
can be written as follows:

(3)
where  is the measurement vector; 

 is a design matrix; and  is the 
measurement noise vector. The mea-
surement covariance matrix is written 
as

Grade Navigation Tactical Automotive Consumer

Position Error 1.9 (km/hr) 19 – 38 (km/hr) ≈ 2 (km/min) ≈ 3-5 (km/min)

Gyros

  Bias (deg/hr) 0.005 – 0.01 1-10 ≈ 180 360 - 3600

  Scale factor (ppm) 5 -50 200 -500

  Noise (deg/hr/√Hz) 0.002 – 0.005 0.2 – 0.5

Accel

  Bias (mg) 5 -10 200 – 500 ≈ 1200 ≈  2400

  Scale factor (ppm) 10 – 20 400 – 1000

  Noise (mg /hr/√Hz) 5 – 10 200  - 400

Price (US$) ≈ 100K 10K – 60K 1K – 5K 100 – 300

Mass Production No No Yes Yes
Table 1. Comparison of Different INS Grades
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(4)

The system noise  and measurement 
noise  are assumed to be uncorre-
lated, i.e.  for all i, k.

Another Profile: the UKF
In the UKF, system noises are gener-
ated and are passed through the system 
process model. So, the state vector, x, 
and the system noise vector, w, are aug-
mented to create the augmented state 
vector, xa:

(5)
The UKF is based on transforming a 
set of deterministically chosen points, 
called the sigma points, through the 
nonlinear system process and mea-
surement models. The unscented trans-
formation (UT) refers to the procedure 
of obtaining a set of the sigma points 
(SPs),  , and the associated weights, 

, from the given mean, , and cova-
riance, , satisfying

(6)
where p is the number of sigma points. 
Of several proposals for the UT, the 
scaled spherical simplex UT was 
applied in this paper because it gener-
ates minimal number of SPs. Scaling 
the sigma points is an important step 
in attitude estimation. 

The UKF is a straightforward 
extension of the UT to the recursive 
estimation. First, we initialize the 
augmented states and covariance as 
follows:

(7)

where 

and . 

Then, the scaled simplex SPs are gener-
ated. During the prediction stage, the 
SPs go through the nonlinear system 
process model

(8)
where the superscript ‘+’ and ‘-’ denote 
the updated and predicted states, 
respectively;  is the rotation rate 
of the body frame with respect to the 
inertial frame; and fb is the specific 
force measurement. (The article by 
Shin (2004) cited in the Additional 
Resources section describes the system 
process model m[·]well.) Then, the 
predicted mean and covariance are 
computed using the transformed sigma 
points as follows:

(9)

(10)
where  and  are weights for the 
mean and covariance computation, 
respectively.

During the update state, the sigma 
points are transformed through the 
measurement model:

(11)
The predicted measurement is com-
puted as:

(12)

Then, the rest of the update equations 
can be written as follows:

(13)

(14)

(15)

(16)

(17)

(18)

where zk and Rk are the measurement 
and its noise covariance, respectively; 
and Kk is the Kalman gain matrix. 

We summarize the implementa-
tion steps of the EKF and UKF in Table 
2. Feedback of the biases can also be 
implemented to deal with the situation 
in which short-term correlated biases 
are superimposed on large long-term 
biases (See Figure 1 for details on the 
data flow.)

Tests and Results
This section compares the perfor-
mance of the EKF and the UKF using 
datasets collected in land vehicles with 
three different MEMS-based IMUs. 
The same set of GPS receivers and 
postprocessing software were used in 
all of the tests. We use several IMUs 

KALMAN FILTER FACE-OFF

Unscented Kalman filters have  
a number of clear advantages. 
The mean and covariance of the state esti-

mate is calculated to second order or better, 
as opposed to first order in the EKF. This 
leads to a more accurate implementation of 
the optimal recursive estimation equations, 
which is the basis for both the EKF and UKF

No explicit Jacobian or Hessian calcula-
tions are necessary for the UKF. This is 
especially valuable in situations where the 
system is a “black box” model in which the 
internal dynamic equations are unavailable.
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built IMU sensor triads will be shown 
in detail as an example.

The first dataset used a prototype 
MEMS IMU manufactured through a 

in different field tests so as to be able 
to draw general conclusions about the 
two estimation algorithms. In this 
article, only the results of the custom-

surface-micromachining process and 
well calibrated including cross-axis 
misalignment and thermal drift com-
pensation. The test was conducted by 
Applanix Corporation in Toronto on 
March 5, 2003. The reference for the 
position, velocity and attitude are the 
smoothed best estimates (SBET) pro-
vided by Applanix Corporation using 
postprocessing software and data from 
a tactical-grade IMU. 

The attitude accuracy of the refer-
ence solution is known to be 0.02° 
for roll and pitch, and 0.05° for head-
ing, when there are no GPS outages. 
The vehicle used in the test was a 
van, which was driven with both low 
dynamics (small loops) and typical 
high-way condition (large rectangular 
loops). For most of the time, horizontal 
and vertical position accuracies of the 
DGPS solution were about 2–3 centi-
meters and 4–9 centimeters, respec-
tively. 

In the second dataset, the IMU 
used quartz tuning-fork gyroscopes. 
The field test was conducted in the 

EKF UKF

Gaussian random 
variables (GRV) 
propagation

Propagated analytically through the first-order 
linearization of the nonlinear system.

Represented using a minimal set of carefully chosen sample points 
(Sigma Points or SPs). The SP completely captures the true mean 
and covariance of the GRV, and when propagated through the true 
nonlinear system, captures the posterior mean and covariance 
accurately to the 2nd order (Taylor series expansion) for any 
nonlinearity.

Initialization 1. Initialize the error state and its covariance 1. Initialize the state and its covariance 
2. Generate sigma points (SPs) for the initial states and covariance

Prediction 1.   
2.  

1. Transform SPs through the INS mechanization 
2. Compute mean and covariance from the transformed SPs 
3. Generate sigma points for the predicted states and covariance

Update 1.   
2.  
3.  
4.

 

1. Transform SPs through the measurement model 

2. Compute predicted measurement, , 
3. from the transformed SPs 
4. Compute covariance between the state and the measurement, 

 
5. Compute covariance of the innovation sequence,  
6.  

7.  
8.  
9. Generate sigma points for the updated states and covariance 

Feedback Position, velocity, attitude and bias Bias
Table 2. Implementation of the EKF and the UKF

Sensors biases error estimates 

Specific forces &
Angular rates 

Inertial
Measurement

Unit

Inertial
Measurement

Unit

INS
Mechanization

Extended
Kalman Filter

(EKF)

GPS Receiver

GPS Receiver

GPS-derived position &
velocity estimates

Sensors biases corrections

Specific forces &
Angular rates

GPS-derived position & velocity estimates

Position, velocity & 
attitude corrections

INS-derived position,
velocity & attitude

Position, velocity &
attitude error estimates

Position, velocity, attitude, 
& their Variances 

Predicted state
and Variances

Position, velocity &
attitude estimates

Position, velocity &
attitude estimates

+  

-

+

-

Unscented
Transformation
for Prediction
(Include INS 

Mechanization)
KF Update

using Unscented
Transformation

Figure 1  EKF Versus UKF Data Flow
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eters, we performed 
laboratory calibra-
tions to obtain 
values for the 
biases, scale fac-
tors, and cross-axis 
misalignments. As 
a result, the biases 
of the gyroscopes 
and accelerometers 
have been reduced 
to 0.5 deg/s and 6 
mg, respectively.

The third data-
set was collected 
using the sen-
sor triads mostly 
on a highway 
near the Calgary 

International Airport in a joint test 
with NovAtel, Inc. using a test van. A 
smoothed DGPS/INS solution from a 
navigation-grade IMU served as the 
reference. Figures 3 and 4 show the tra-
jectory and the accuracy of the DGPS 
solution, respectively. Although the sky 
was open for most of the time, build-
ings and bridges resulted in frequent 
GPS outages and significant DGPS 
solution degradation. 

All three datasets were processed 
by the EKF and the UKF using param-
eters specifically tuned for each of the 
IMUs. Three processing scenarios for 
land vehicle navigations were consid-
ered to compare these two algorithms. 

KALMAN FILTER FACE-OFF

Research Park of the University of 
Calgary on March 4, 2003, operat-
ing a passenger vehicle and driven 
with relatively low speed in a small 
area. Because no other higher grade 
IMU was used, we used the smoothed 
solution from the unscented Kalman 
smoother (UKS) as the reference for 
this dataset. 

The prototype MEMS IMU devel-
oped by the Mobile Multi-Sensor Sys-
tems Research Group at the University 
of Calgary and is shown in Figure 2. 
We refer to this IMU as the sensor tri-
ads. Since the original bias errors of the 
triad’s sensors are as large as 20 deg/s 
for gyroscopes and 2 g for accelerom-

Scenario 1: Results with 
Continuous GPS Updates
The first scenario ran the algorithm 
with regular GPS updates. Our pur-
pose was mainly to check whether the 
algorithms worked correctly or not. 
With continuous GPS measurements, 
the trajectory will generally follow that 
of the DGPS solution, while attitude 
errors will somehow reflect the quality 
of the integrated systems. 

The results from the three MEMS 
systems show that the attitude accura-
cies can reach 0.1–0.4 degrees for pitch 
and roll, 0.7-1.3 degrees for heading. 
Table 3 lists the performance of the sen-
sor triads as an example. For all three 
datasets, the EKF and the UKF showed 
similar performance. 

Scenario 2: Results with 
Simulated GPS Outages
In the second scenario we processed 
the datasets with simulated GPS out-
ages, which covered typical driving 

Figure 2  The sensor triads developed by the Mobile Multi-Sensor 
Systems Research Group, the Universityof Calgary (The dimension of 
the unit is 9.2x7.4x4.0 cm)

5000

4000

3000

2000

1000

0

No
rth

 (m
)

-2000 -1000 0 1000 2000 3000 4000 5000

East (m)

10

5

0

No
rth

 (m
)

0 20 40 60 80 100 120
6

4

2

0

Ea
st

 (m
)

0 20 40 60 80 100 120
30

20

10

0

He
ig

ht
 (m

)

0 20 40 60 80 100 120
Time (minute)

Figure 3  Trajectory of the third dataset Figure 4   DGPS position accuracy of the third dataset

EKF UKF

Position 
(m) 

North 0.081 0.080

East 0.056 0.056

Height 0.169 0.149

Attitude 
(deg) 

Roll 0.230 0.252

Pitch 0.366 0.346

Heading 1.258 1.194

Table 3. Overall Performance (Sensor triads)
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conditions of land vehicles. It is a chal-
lenge for a low-cost INS to achieve high 
accuracy during GPS outages and also 
is a popular criterion for evaluating the 
performance of an integrated naviga-
tion system. Table 4 lists the maximum 
position errors during intentional 
30-second GPS outages for the sensor 
triads. Again, the EKF and the UKF 
showed similar performance for each 
GPS outage in each direction. Gener-
ally, the average position drift after 30 
seconds of GPS signal outages were 
from 10 to 30 meters for the tested 
MEMS IMUs.

Scenario 3: Results with 
Large Initial Attitude Errors
Typically, coarse alignment of an INS 
is done in stationary mode using level-
ing (by accelerometers) followed by 
gyro-compassing or, alternatively by 
using an analytical method that solves 
the gravity and the Earth rotation 
measurements in one step. For MEMS-
based IMUs, however, the gyroscopes 
are not accurate enough to sense the 
Earth’s rotation rate. Further, if the 
IMU is installed in a consumer vehicle, 
we cannot expect the user to wait until 
the alignment is finished. Hence, in-
motion alignment is typically used. 

The GPS-derived velocity can be 
used for coarse in-motion alignment if 
the vehicle’s forward axis is parallel to 
the velocity vector. In airborne or ship-

borne applications, 
the vehicle may 
have lateral veloc-
ity components. 
In such cases, the 
initial heading 
derived from the 
GPS velocity can 
have large errors. 
Initial tilt errors 
may also be large 
if the vehicle is 
in high-dynamic 
motion.

All these issues 
will cause large 
initial attitude 
errors, which was 
our third scenario. 

The test has been done by intentionally 
adding large initial attitude errors (30 
degrees) for roll, pitch and heading. 
Under these serious initial conditions, 
the assumption of linear error behavior 
for the EKF could be violated. 

Because the EKF described in this 
article used a standard computer frame 
error model, the EKF could not deal 
with large attitude errors and generat-
ed computational failure. On the other 
hand, the UKF converged as shown 
in Figure 5. The convergence has been 
made within 50 seconds, and the RMS 
of attitude errors after the convergence 
is listed in Table 5. For the EKF to cope 
with large attitude errors, a special 
INS error model must be developed. 
However, the UKF can deal with large 
attitude errors without devising a spe-
cial model, and the transition from the 
large to small attitude errors is seam-
less

Conclusions
This article has reviewed the imple-
mentation of the EKF and the UKF 
and compared their performance for 
integrated low-cost inertial navigation 
systems. Both the EKF and the UKF 
work well for the integration of typical 
MEMS-based IMU and GPS. Perfor-
mance of the EKF and the UKF is gen-
erally similar (in both cases when GPS 
signals are available and when GPS 
signals are blocked). 

The EKF requires a special naviga-
tor error model to handle large initial 
attitude errors. However, the UKF can 
deal with such errors without addi-
tional effort, and the transition from 
the large to small attitude uncertainties 
is seamless. Therefore, the UKF will be 
beneficial in the applications where in-
motion alignment is required.
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Outage Direction EKF UKF

1 North (m) 58.203 57.731

East (m) 46.653 47.066

Height (m) 0.983 0.708

2 North (m) 17.086 17.452

East (m) 11.873 11.802

Height (m) 2.628 2.014

3 North (m) 0.813 0.422

East (m) 28.424 29.180

Height (m) 3.574 3.736

4 North (m) 22.054 22.093

East (m) 5.200 5.002

Height (m) 0.946 0.829

5 North (m) 11.583 11.858

East (m) 1.402 0.773

Height (m) 1.373 1.468

6 North (m) 15.656 15.297

East (m) 15.020 14.708

Height (m) 0.531 0.731

Table 4. Maximum errors during 30s GPS
outages (ADI Sensor triads)

Time Roll Pitch Heading

100–300 s 0.178 0.179 0.357

100–700 s 0.137 0.135 0.651

Table 5. RMS of the attitude errors for large
initial atitude uncertainties (degrees)
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Figure 5   Attitude errors of the UKF under large initial attitude
uncertainty (prototype IMU, first dataset).
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er, Applanix Corporation, for provid-
ing a dataset for the ISIS IMU test.

Manufacturers
OEM4 and MiLLennium from NovA-
tel Inc., Calgary, Alberta, Canada, were 
used in the tests. The post-processed 
DGPS position solutions from GrafNav 
software from Waypoint Consult-
ing, Inc., Calgary, were used as the 
measurement updates for the EKF and 
UKF in all datasets. The custom-built 
IMU integrates three accelerometers  
(ADXL105) and three gyroscopes  
(ADXRS150), both from Analog 
Devices Inc., Norwood, Massachusetts, 
USA. The first dataset used a prototype 
IMU (ISIS IMU) made by Inertial Sci-
ence, Inc., Newbury Park, California, 
USA. The ISIS IMU used MEMS gyro-
scopes from Analog Devices, Inc. The 
reference for the position, velocity and 
attitude are the smoothed best esti-
mates (SBET) using POSPac software 
from Applanix Corporation (a Trim-
ble company), Richmond Hill, Ontario, 
Canada. to process the data using a 
tactical-grade IMU the LN-200 from 
Northrop Grumman, Navigation 
Systems Division, Woodland Hills, 
California. The second dataset used a 
MotionPak II IMU from BEI Systron 
Donner, Inertial Division, Concord, 
California. The third dataset was col-
lected using the sensor triads and The 
smoothed DGPS/INS solution from a 
navigation-grade C-IMU, Honeywell 
Inc., Phoenix, Arizona, USA. All the 
three data were processed using  AINS 
(Aided Inertial Navigation System 
(AINS™) software developed by by the 
Mobile Multi-Sensor Systems Research 
Group at the University of Calgary.
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